Synthesis and structure of a dinuclear cobalt carbonyl derivative containing methyldithioformate as a five-electron donor ligand

Giuliana Gervasio ${ }^{2 \times}$, Sándor Vastag ${ }^{\text {b }}$, Gábor Szalontai ${ }^{\text {c }}$, László Markó ${ }^{\text {d. }}$
${ }^{4}$ Dipartimento di Chimica Inorgantica, Chimica Fisica e Chimica dei Materiali. Università di Torino, 1-10125 Tariso, Italy
${ }^{\mathrm{b}}$ Instinuze of Organic Chemistry. University of Vestprém, H-8200 Vesqpeém, Hungary
${ }^{\text {' }}$ Central Laboratory, Unwersity of Vespprém, H-8200 Vesuprém, Hungary
${ }^{\text {d }}$ Research Group for Petrochemistry of the Hungarian Academy of Sciences, Universiy of Veszprém, Egyerem u 8, H- 8200 Vescarém, Hengary

Received 16 September 19%

Abstract

Dicobalt octacarbonyl reacts with an excess of $\left(\mathrm{MeSCS}_{2}\right)_{2}$ to form several sulfur-containing cohalt carbonyl derivatives; on adhainam of PPh_{3}, the complex $\mathrm{Co}_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(1,3-\eta-\mathrm{S}_{2} \mathrm{CSMe}\right)(\mu-1,2-\eta-S C S M e)(1)$ could be isolated from the reaction mixture. The structare of complex 1 was decermined by X-ray crystaliography; it contains a methyl dithioformate ligand in which the ligase donates five electrons to the cluster and the CS group is bound perpendicular to the Co_{2} cone.

Keywords: Cobalt carbonyl; Dithioformate; Thionanthate

1. Introduction

Several metal carbonyl complexes containing dithioesters as ligands have been described already. In these complexes the dithioester may be bunded either to one [1-14], two [12,15-21], or five [22] metal atoms. The number of electrons donated by the ligand to the metal(s) in order to achieve the 18 -electron configuration in these complexes is one $[2,3,5,12,14]$, three [1,4 $11,13,14,16,19]$, four [20], or six [12,15,17,18,21,22]. We report now the synthesis and structure of an aikyl dithioformate-substituted dinuclear cobalt carbonyl derivative in which the dithioester ligand is a five-electron donor.

2. Results and discussion

Dicobalt octacarbonyl reacts at room temperature in dishloromethane solution with bis(methylthio(thiocabbonyl)) isulfide, $\left(\text { MeSCS }_{2}\right)_{2}$, to give a complex mixture of different cobalt carbonyl derivatives. Evaporat-

[^0]ing the reaction mixtures to dryness and dissolving the residues in hexane, the solutions showed \mathbb{R} spectra which suggested that the main products may belong to the well-known class of $\mathrm{Co}_{3}(\mathrm{CO})_{7}\left(\mu_{3}-\mathrm{S}\right)(\mu-\mathrm{L})$ complexes [23,24]. This result would not be suppising. since almost all complexes of this type described tili now were formed by reacting $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ and different organic sulfir compounds. In order to characterize these complexes by transforming them into well-crystallizing products, efforts were undertaken to prepare PPh $_{3}$-substituted derivatives.

However, when product mixtures obtained by using an excess of the organic sulfur compound $\left[\left(\mathrm{MeSCS}_{2}\right)_{2}: \mathrm{Co}_{2}(\mathrm{CO})_{s} 0.56-1.25: 1\right.$: equal to S:Co 3.75-1.67:1] were treated with excess PPh_{3}, a complex with an unusually high S:Cu ratio (5:2) and a very simple IR spectrum in the $\nu_{\text {co }}$ region (1973vs, 1932 m cm^{-1} in Nujol) was obtained. The structure of this unexpected complex was determined by X-ray crystallography, and found to be that shown in Fig. I. Table 1 lists some relevant bond lengths and angles.

As can be seen from Fig. 1, $\mathrm{Co}_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(1,3-\eta_{-}\right.$ $\left.S_{2} \operatorname{CSMe}\right)(\mu-1,2-\eta$-SCSMe) (1) is a dinuclear complex in which the $\mathrm{Co}_{2} \mathrm{P}_{2} \mathrm{C}_{2} \mathrm{~S}_{5}$ core has essentially C_{5} symmeiry and contains two different sulfur-containing ofganic ligands. One of these is mellyl trithiocarbonate

Fig. 1. orter plot (50% probability) of complex 1. $\mathrm{Co}_{2}(\mathrm{CO})_{2}\left(\mathrm{PPH}_{3}\right)_{2}\left(1,3-\pi_{-}-\mathrm{S}_{2} \mathrm{CSMe}\right)(\mu-1,2-\pi-\mathrm{SCSM})$.

MeSCS $_{2}$, which is coordinated through two sulfur atoms parallel to the two cobalt atoms in a way simila: to the arrangement adopted by the closely related MeOCS_{2} ligand in $\mathrm{Co}_{3}(\mathrm{CO})_{7}\left(\mu_{3}-S\right)\left(\mu-1,3-\eta-\mathrm{S}_{2} \mathrm{COMe}\right)$ [24]. The pentaatomic $\mathrm{Co}_{2} \mathrm{~S}_{2} \mathrm{C}$ ring is puckered, while the $\mathrm{S}(1)$, $S(2), C(1)$ and $S(3)$ atoms lie on a plane, thus suggesting a π delocalization on these four atoms, with a

Table 1
Selected bond lengths (\AA) and bond angles (${ }^{\circ}$) for complex 1

$\mathrm{Co}(1)-\mathrm{Co}(2)$	2.435(1)	S(3)-C(1)	1.742(6)
$\mathrm{Co}(1)-\mathrm{S}(1)$	$2.301(2)$	$\mathrm{S}(3)-\mathrm{C}(2)$	1.782(8)
$\mathrm{Co}(1)-\mathrm{S}(4)$	2.230 (2)	S(4)-C(3)	$1.722(6)$
Co(1)-P(1)	2.232(2)	S(5)-C(3)	1.727(5)
$\mathrm{Co}(1)-\mathrm{C}(11)$	1.747(6)	S(5)-C(4)	1.779(8)
$\mathrm{Co}(1)-\mathrm{C}(3)$	1.938(5)	P(1)-C	1.834(6)
Co(2)-S(2)	2.287(2)	$\mathrm{P}(1)-\mathrm{C}$	1.835(6)
$\mathrm{Co}(2)-\mathrm{S}(4)$	$2.226(2)$	$\mathrm{P}(1)-\mathrm{C}$	1.827(6)
$\mathrm{Co}(2)-\mathrm{P}(2)$	2.232(2)	$P(2)-C$	$1.809(6)$
$\mathrm{Co}(2)-\mathrm{C}(21)$	1.745 (6)	$\mathrm{P}(2)-\mathrm{C}$	1.827(6)
$\mathrm{Co}(2)-\mathrm{C}(3)$	1.936(6)	$P(2)-C$	$1.835(6)$
S(1)-C(1)	$1.689(6)$	$\mathrm{C}(11)-\mathrm{O}(11)$	1.141(8)
$\mathrm{S}(2)-\mathrm{C}(1)$	$1.685(6)$	C(21)-O(21)	1.145(8)
$\mathrm{Co}(2)-\mathrm{Co}(1)-\mathrm{S}(1)$	94.7 (1)	$\mathrm{Co}(1)-\mathrm{S}(4)-\mathrm{C}(3)$	57.0(2)
$\mathrm{Co}(2)-\mathrm{Co}(1)-\mathrm{S}(4)$	56.8(1)	$\mathrm{Co}(2)-\mathrm{S}(4)-\mathrm{C}(3)$	57.0(2)
$\mathrm{S}(1)-\mathrm{Co}(1)-\mathrm{S}(4)$	106.3(1)	C(3)-S(5)-C(4)	102.2(3)
$\mathrm{Co}(2)-\mathrm{Co}(1)-\mathrm{P}(1)$	154.3(1)	$\mathrm{Co}(1)-\mathrm{C}(11)-\mathrm{O}(11)$	$176.7(6)$
$\mathrm{Co}(2)-\mathrm{Co}(1)-\mathrm{C}(11)$	102.9(2)	$\mathrm{Co}(2)-\mathrm{C}(21)-\mathrm{O}(21)$	177.9(6)
$\mathrm{S}(1)-\mathrm{Co}(1)-\mathrm{C}(11)$	102.3(2)	$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{S}(2)$	127.1(3)
$\mathrm{Co}(2)-\mathrm{Co}(1)-\mathrm{C}(3)$	51.0(2)	$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{S}(3)$	121.003)
$\mathrm{Co}(1)-\mathrm{Co}(2)-\mathrm{S}(2)$	98.7(1)	$\mathrm{S}(2)-\mathrm{C}(1)-\mathrm{S}(3)$	$111.8(3)$
$\mathrm{Co}(1)-\mathrm{Co}(2)-\mathrm{S}(4)$	57.0(1)	$\mathrm{Co}(1)-\mathrm{C}(3)-\mathrm{Co}(2)$	77.9(2)
$\mathrm{Co}(1)-\mathrm{Co}(2)-\mathrm{P}(2)$	158.6(1)	$\mathrm{Co}(1)-\mathrm{C}(3)-\mathrm{S}(4)$	74.8(2)
$\mathrm{Co}(1)-\mathrm{Co}(2)-\mathrm{C}(21)$	$91.5(2)$	$\mathrm{Co}(2)-\mathrm{C}(3)-S(4)$	74.7(2)
$\mathrm{Co}(1)-\mathrm{S}(1)-\mathrm{C}(1)$	109.3(2)	$\mathrm{Co}(1)-\mathrm{C}(3)-S(5)$	139.0 (3)
$\mathrm{Co}(2)-5(2)-\mathrm{C}(1)$	107.3(2)	$\mathrm{Co}(2)-\mathrm{C}(3)-\mathrm{S}(5)$	137.4(3)
$\mathrm{C}(1)-\mathrm{S}(3)-\mathrm{C}(2)$	105.8(3)	S(4)-C(3)-S(5)	126.3(3)
$\mathrm{Co}(1)-\mathrm{S}(4)-\mathrm{Co}(2)$	66.2(1)		

greater double bond character on the shorter $C(1)-S(1)$ and $C(1)-S(2)$ bonds ($1.687(6) \AA$ av.) compared with the $C(1)-S(3)$ bond ($1.742(6) A$). The extension of the π delocalization to the $C(1)-S(3)$ bond is also confirmed by the small deviation of $C(2)$ from the mean plane $(0.15 \AA)$, as already found in $\mathrm{Co}_{3}(\mathrm{CO})_{7}\left(\mu_{3}-\mathrm{S}\right)(\mu-$ $\left.1,3-\eta-\mathrm{S}_{2} \mathrm{COMe}\right)$ [24] and in $\mathrm{Co}_{3}(\mathrm{CO})_{5}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mu_{3}-\mathrm{S}\right)(\mu-$ $1,3-\eta-S_{2} \mathrm{CSBu}^{\text {t }}$) [25]. The asymmetry of the angles around $\mathrm{C}(1)$ is a consequence of this rough coplanarity, which gives rise to a $C(2) \ldots S(1)$ contact $(3.113 \AA)$, significantly shorter than the sum of the van der Waals radii.

The other ligand is methyl dithioformate MeSCS, which through its CS group is also coordinated to both cobalt atoms but occupies a position perpendicular to the two metals. The $C(3), C(4), S(4)$ and $S(5)$ atoms lie on a plane with a mean deviation from it of $0.032 \AA$; this planarity and the values of the $C(3)-S(4)$ and $C(3)-S(5)$ bond lengths (1.724(6) \AA av.) suggest a π delocalization along the SCS chain. The $C(3)-S$ bond lengths are in the range of those observed in other compounds ($1.720-1.737 \AA$), having a similar arrangement of the $\mathrm{M}_{2} \mathrm{CS}$ 'tetrahedron' ($\mathrm{M}=\mathbf{M o}, \mathbf{W}, \mathrm{Fe}$, or $\mathrm{Co})[20,21,26-32]$.

Two features of the structure of complex 1 deserve a mention. One of these is that the CS group uses five electrons in bonding to the two metais to satisfy the 18 -elecrion rule. This is a bonding mode which has been observed in metal carbonyl chemistry only in a few cases up to now [20,27-32], and none of these is a dithioester complex. The other is the symmetry of the $\mathrm{M}_{2} \mathrm{CS}$ 'tetrahedron', in the sense that the two metal atoms are identical and have the same arrangement of ligands in their coordination sphere, which is also rather rare $[20,21,27,28,33,34]$. Owing to the odd number of
electrons furnished by the CS group, this is only possible because the methyl trithiocarbonate ligand also donates an odd number of electrons (three) to the two cobalt atoms.

The CO and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ tigands on the two Co atoms are nearly eclipsed. The crystal packing shows a short contact ($2.91 \AA$) between $\mathrm{S}(5)$ and a H phenylic atom of a molecule at $x,-0.5-y,-0.5+z$; this contact is in the plane of the $C(3), C(4), S(4)$ and $S(5)$ atoms, with angles of $123^{\circ}(\mathrm{C}(3)-\mathrm{S}(5) \ldots \mathrm{H})$ and 134° (C(4)S(5) ...H).

In agreement with iss structure, complex 1 shows only one signal in its ${ }^{31} \mathrm{P}$ NMR spectrum at $\mathbf{3 8 . 4} \mathbf{~ p p m}$. The ${ }^{13} \mathrm{C}$ spectrum exhibits a triplet at 242.6 ppm (Cl , ${ }^{3} J\left(\mathrm{PCOSC}_{1}\right) 16.5 \mathrm{~Hz}$), a broadened singulet at 210.1 ppm $\left(\left(\mathrm{CO}_{2}\right)\right.$, a further, slighter broadened singulet at 138 ppm (assigned to (C3)) and, apart from the aromatic carbons of the phenyl rings, two sharp singulets of the S -methyl groups (24.3 and 21.9 ppm). The value of the chemical shift of C 3 falls within the range observed for μ-methylene complexes ($100-200 \mathrm{ppm}$) [35].

Experiments to characterize further complexes formed in the same reaction and to get some information about the mechanism of formation of $\mathbf{1}$ are in progress.

3. Experimental section

3.1. General methods

All manipulations were carried out under Ar by standard Schlenk techniques using deoxygenated, dry solvents. Infrared spectra were recorded on a Specord IR 75 (Carl Zeiss, Germany) spectrometer and were calibrated with benzene ($1959.6 \mathrm{~cm}^{-1}$). ${ }^{31} \mathrm{P}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained at 293 K on a Varian Unity 300 spectrometer. $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ was prepared according to the literature method [36].

3.2. Synthesis

3.2.1. Preparation of $\left(\mathrm{MeSCS}_{2}\right)_{2}$

The method of Knoth and Gattow [37] was somewhat modified in the sense that $\mathrm{NaNO}_{2} / \mathrm{HCl}$ was used as an oxidant [38] instead of $\mathrm{I}_{2} .8 .0 \mathrm{~g}(0.143 \mathrm{~mol}) \mathrm{KOH}$ was dissolved in 40 ml water, and after cooling 7.6 ml (approx. $6.2 \mathrm{~g}, 0.13 \mathrm{~mol}) \mathrm{MeSH}$ and $8.6 \mathrm{ml}(10.9 \mathrm{~g}$, 0.143 mol) CS_{2} added. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ until it became homogeneous. Following this, $8.0 \mathrm{~g}(0.116 \mathrm{~mol}) \mathrm{NaNO}_{2}, 8 \mathrm{ml} \mathrm{MeOH}$ and finally 10 ml conc. HCl were added under stirring at $0^{\circ} \mathrm{C}$. The product slowly crystallized from the solution. Filtration and washing with cold water yielded $15.0 \mathrm{~g}\left(\mathrm{MeSCS}_{2}\right)_{2}$ ($0.122 \mathrm{~mol}, 94 \%$ calculated on MeSH). M.p. $89^{\circ} \mathrm{C}$ (lit. $89-90^{\circ} \mathrm{C}$) [37].

Table 2
Crystal data and parameters of difa collection and refinement for complex 1

Empirical formula Color. habit	$\begin{aligned} & \mathrm{C}_{42} \mathrm{H}_{38} \mathrm{Co}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{~S}_{3} \\ & \text { brown; prismatic } \end{aligned}$
Crystal size (mm^{3})	$0.20 \times 0.40 \times 0.52$
Crystal system	monoclinic
Space group	$\mathrm{P}_{1} \mathrm{I} / \mathrm{C}$
Unit cell dimensions	$\mathrm{a}=18.039(3) \AA$
	$b=10.530(2) \hat{A}$
	$c=21.526(4) \AA$ A
	$\beta=92.37(2)^{\circ}$
Volume	4085.4(13) ${ }^{\text {d }}$
Z	4
Formula weight	912.8
Density (calc.)	$1.484 \mathrm{gcm}^{-3}$
Absorption coefficient	$1.182 \mathrm{mmm}^{-1}$
2θ range	20-55.09
Scan type	9-20
Scan speed	Variable; 4.00-70.00 risis $^{-1}$
Scan range	$200{ }^{\circ}$
Reflections collected	9716
Independent reflections	9289 ($\mathrm{R}_{\text {ias }}=2.27 \%$)
Observed reflections	5475 ($F>4.0 \sigma$ (F))
Absorpion correction	Sem-empirical
Min./max. uransmission	0.2104/0.2321
Refinement method	Full-matrix least-squares
Quantity minimized	$\boldsymbol{\Sigma w}\left(F_{0}-F_{c}\right)^{2}$
Weighting scheme	$w^{-1}=\sigma^{2}(F)+0.0030 F^{2}$
Number of parameters refined	478
Final R indices (obs. data)	$R=5.67$ \% , wR $=7.32 \%$
R indices (all daza)	$R=10.19 \%$ \% $w=12.37 \%$
Goodness-of-fit	1.03
Largest and mean $\boldsymbol{\Delta} / \boldsymbol{\sigma}$	0.111, 0.004
Data-to-parameter ratio	115:1
Largest difference peak	$1.18 \mathrm{e} \dot{A}^{-3}$
Largest difference hole	$-0.47 e^{A^{-3}}$
$K=\Sigma\left(F_{\mathrm{o}}-F_{\mathrm{s}}\right) / \Sigma F_{\mathrm{o}} ; w R=\left(\Sigma\left(w\left(F_{\mathrm{o}}-F_{\mathrm{c}}\right)\right)^{2} / \Sigma\left(w F_{o}\right)^{2}\right)^{1 / 2}$	

3.2.2. Preparation of $\mathrm{Co}_{2}\left(\mathrm{CO}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(1,3-7-\right.$

513 mg (1.5 mmol) $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ and 308 mg (1.25 mmol) $\left(\mathrm{MeSCS}_{2}\right)_{2}$ (S:Co 5:2) were dissolved usder Ar in 20 ml dichloromethane and the solution stimed until the IR spectra of samples taken from the reaction mixture indicated that all $\mathrm{CO}_{2}(\mathrm{CO})_{\mathrm{B}}$ had been consumed (about 16 h). The dark brown solution was evaporated in vacuo to dryness, the residue dissolved in 20 ml hexane and filtered. To this solution 580 mg (2.21 mamol) PPt_{3} was added, and the reaction mixnure stored overnight at $0^{\circ} \mathrm{C}$. The crystals were filtered and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane by the slow diffusion method. Yield 176 mg ($0.193 \mathrm{mmol}, 12.9 \%$, calculated on cobalt). Anal. Found Co, 13.3; P, 6.70. Calc.: Co, 12.91; P, 6.78\%.

3.3. Coystallography

The crystal data, parameters of data collection and refinement are collected in Table 2. In Table 3 atomic

Table 3
Selected aromic coordinates ($\times 10^{4}$) and equivalent isomopic disphacement coefficients ($\AA^{2} \times 10^{3}$) for complex 1

Atam	x	y	z	$U_{\text {eq }}$
Co(1)	2385(1)	-261(1)	50151)	$33(1)$
Co(2)	2705(1)	1238(1)	4207(1)	$33(1)$
S(1)	3360(1)	298(2)	$5682(1)$	45(1)
S\{2)	38799(1)	1737(2)	4567(1)	43(1)
5(3)	4873(1)	1429(2)	5613(1)	56(1)
S(4)	2883(1)	-847(1)	4128(1)	40 (1)
S(5)	1236(1)	-599(2)	3713(1)	$52(1)$
P(1)	2168(1)	-2193(1)	5392(1)	$34(1)$
P(2)	2813(1)	2030(1)	3253(1)	$35(1)$
C(1)	1632(4)	$472(6)$	5354(3)	45(2)
O(11)	[119(3)	922(6)	5555(3)	76(2)
C(21)	2165(3)	2423(6)	4531(3)	44(2)
(21)	1805(3)	3174(5)	4756(3)	$66(2)$
C(1)	3992(3)	1119(5)	5286(3)	37(2)
C(2)	4923(4)	597(9)	6335(3)	70(3)
C(3)	2016(3)	-171(6)	4157(2)	38(2)
C(4)	536(4)	359(9)	4033(4)	74(3)

Equivalent isotropic U defined as one third of the trace of the orthogonalized $L_{i j}^{r}$ tensor.
fractional coordinates of the most relevant atoms are given. The reflections with $-23 \leq h \leq 23,0 \leq k \leq 13$, $0 \leq l \leq 28$ were collected on a Siemens P4 automatic diffractometer using graphite monochromated Mo K α rediation $(\lambda=0.71073 A)$. Two standard reflections were measured every 50 reflections; no decay was detected. For solution (direct methods) and refinement the Siemens ShelXTL, IRIS package was used. Most of the hydrogen atoms coincident with the calculated ones appeared on the last Fourier difference map; therefore they were put in the calculated positions and refined riding on the corresponding carbon atoms with fixed $U_{\text {iso }}$. All other atoms were anisorropically refined.

4. Supplementary amaterial available

Full tables of distances and angles, fractional atomic coordinates and anisotropic thermal parameters. List of observed and calculated structure factors.

Acknowledgements

This work was supported by $40 \% / 60 \%$ MURST (lualy) and OTKA grants T-7444 and T-016260 (Hungary).

Referctaces

[1] K.A. Grundy, R.O. Harris and W.R. Roper, J. Organomet. Chert, 90 (1975) C34.
[2] J.E. Ellis, R.W. Fensell and E.A. Flom, Inorg. Chem., IS (1976) 2031.
[3] J.M. Waters and J.A. Ibers, Inorg. Chem, 16 (1977) 3273.
[4] G.R. Clark, TJ. Collins, S.M. James and W.R. Roper, J. Organomer. Chem, 125 (1977) C23.
[5] T.J. Collins and W.R. Roper. J. Organomet. Chem., 139 (1977) C9.
[6] P. Conway, S.M. Grant and A.R. Manning, J. Chem. Soc., Dalton Trans., (1979) 1920.
[7] D. Touchard, H. Le Bozec and P.H. Dixncuf, J. Organomet. Chem, 170 (1979) C34.
[81 S.M. Boniface and G.R. Clark, J. Organomer. Chem, 184 (1980) 125.
[9] D. Touchard, H. Le Bozec, P.H. Dixneuf, A.J. Carthy and N. Taylor, J. Inorg. Chem, 20 (1981) 1811.
[10] W.A. Schenk, T. Schwietzke and H. Mliller, J. Organomet. Chem., 232 (1982) C4i.
[11] D. Touchard, P.H. Dixneuf, R.D. Adams and B.E. Segmüller, Organometallics, 3 (1984) 640.
[12] D. Seyferth, G.B. Womack, M. Cowie and B.W. Hames, Organometallics, 3 (1984) 1891.
[13] C. Bianchini, C.A. Ghilardi, A. Meli and A. Orlandini, J. Organomet. Chem, 286 (1985) 259.
[14] M. Herbertrold, A.F. Hill, N. McAuley and W.R. Roper, J. Organomet. Chem, 310 (1986) 95.
[15] H. Patin, G. Mignani, R. Dabard and A. Benoit, J. Organomet. Chem, 168 (1979) C2t.
[16] H. Patin, G. Mignani, C. Mahé, J.-Y. Le Marouille, T.G. Southem, A. Benoit and D. Grandjean, J. Organomet. Chem., 197 (1980) 315.
[17] A. Bemoit, J.-Y. Le Marouille, C. Mahe and H. Patin, J. Organomet. Chem., 218 (1981) C67.
[18] D. Seyferth, G.B. Womack, L.C. Song, M. Cowie and B.W. Hames, Organometallics, 2 (1983) 928.
[19] H. Stolzenberg. W.P. Fehlhammer, M. Monari, V. Zanoni and L. Busetto, J. Organomet. Chem., 272 (1984) 73.
[20] H. Alper, F.W.B. Einstein, F.W. Harstock and A.C. Willis, J. Am. Chem. Soc., 107 (1985) 173.
[21] D. Seyferth, G.B. Womack, M.K. Gallagher, M. Cowie, B.W. Hames, J.P. Fackler and A.M. Mazany, Organometallics, 6 (1987) 283.
[22] C.H. Wei, Inorg. Chem., 23 (1984) 2973.
[23] P.L. Stanghellini, G. Gervasio, R. Rossetti and G. Bor, J. Organomet. Chem., 187 (1980) C37; H. Patin, G. Mignani, C. Mahe, J.-Y. Le Marouille, A. Benoit, D. Grandjean and G. Levesque, J. Organomet. Chem., 208 (1981) C39; C. Mahe, H. Patin, A. Benoit and J.-Y. Le Marouille, J. Organomet. Chem, 216 (1981) C15; G. Gervasio, R. Rosserti, P.L. Stanghellini and G. Bor, Inarg. Chem, $2 I$ (1982) 3781; A. Benoit, A. Darchen, J.-Y. Le Marouille, C. Mahe and H. Patin, Organometallics, 2 (1983) 555; A.J. Edwards, A. Martin, M. Mays, D. Nazar, P.R. Raithby and G.A. Solan, J. Chem. Soc., Dalon Trans., (1993) 355; G. Gervasio, F. Musso, S. Vastag, G. Bor, G. Szalontai and L. Markó, J. Cluster Sci, 5 (1994) 401.
[24] L.. Markó, G. Gervasio, P.L. Stanghellini and G. Bor, Trans. Met. Chem., 10 (1985) 344.
[25] L. Marko, G. Gervasio and S. Vastag, in preparaion.
[26] H. Umland, F. Edelmann, D. Wormsbicher and U. Behrens, Angew. Chem., 95 (1983) 148; Angew. Chem, Int. Ed Engl., 22 (1983) 153; D. Seyfenh, G.B. Womack, M. Cowie and B.W. Hames, Organometallics, 2 (1983) 1696; L. Busetto, V. Zanoti, V.G. Albano, D. Braga and M. Monari, Gazz. Chim. Ihal., 116 (1986) 10 I.
[27] H. Umland and U. Behrens, I. Organomet. Chem., 287 (1985) 109.
[28] H. Alper, F.W.B. Einstein, F.W. Harstock and A.C. Willis, Organometallics, 5 (1986) 9.
[29] M.E. Garcia, J.C. Jeffery, P. Sherwood and F.G.A. Stone, J. Chem. Soc., Chem. Commun., (1986) 802.
[30] P.G. Byme, M.E. Garcia, J.C. Jeffery, P. Sherwood and F.G.A. Stane, J. Chem Soc.. Dalton Trans., (1987) 1215.
[31] W. Ziegler, H. Umland and U. Behrens. J. Organomer. Chem, 344 (1988) 235.
[32] A. Martin, M.J. Mays, P.R. Rajithby and G.A. Solan, J. Chem Soc., Daltom Trans., (1993) 1789.
[33] D. Seyfent, G.B. Womack, M. Cowie and B.W. Hames, Organometallics, 2 (1983) 1696.
[34] H. Ualand. F. Edelmann, D. Wormsbächer and U. Behrens,

Angew. Chemt, 95 (1983) 148; Angew. Chem, Got Ed. Egad. 22 (1983) 156.
[35] W.A. Herranana, Adv. Organomer Chem, 20 (1982) 160.
[36] P. Szabó, L. Markó and G. Bor. Chem, Tech (Berlia), IJ (1961) 549.
[37] W. Knoth and G.Z. Gattow, 2 Arorg. Allg. Chems, 554 (1987) 172.
[38] 1. Neclakaman, J. Org. Chem, 23 (1958) 938.

[^0]: - Comesponding authers.

